
Autonomous Data Transfer Operations for Missions

Max Rcpaci, Paul Baker, and Fred Brosi

Global Science and Technology, Inc.
Greenbelt, MD, USA

Automating the data transfer operation can significantly reduce the cost of moving data from a
spacecraft to a location on Earth. Automated data transfer methods have been developed for the

terrestrial Internet. However, they often do not apply to the space environment, since in general they
are based on assumptions about connectivity that are true on the Internet but not on space links.

Automated file transfer protocols have been developed for use over space links that transfer data via

store-and-forward of files or segments of files. This paper investigates some of the operational
concepts made possible by these protocols.

The current trend in space missions is away from a few large expensive missions and toward many small
low-cost missions. If the overall budget is not increased, this trend necessarily implies a lower cost per

mission. We argue that a portion of the necessary cost reductions can be realized through increased
standardization and automation. Standardization of communications protocols and operations can allow the

development, maintenance, and even operational costs of infrastructure and software to be shared among
many missions. Automation can eliminate a significant component of the operations budget.

In the past, the mission budgets were larger and there were fewer missions. Those mission components
whose costs would be significantly reduced by these methods were a relatively smaller fraction of the total

mission budget, and there were fewer missions over which to share costs. Therefore missions made heavy
use of custom protocols and software, and manual operations were common. Now that the cost of the other

mission components has been reduced, for example, by flying smaller spacecraft, missions have a strong
incentive to apply these methods.

We will investigate operational scenarios possible with an automated data transfer method. We will
consider operations to support routine data transfers, since those most readily lend themselves to
automation. Examples of these transfers include that of command loads to the spacecraft or of stored

telemetry data from the spacecraft. Automating routine transfers can reduce operations costs; development
costs can be reduced as well by standardizing the software, interfaces, and protocols used for data transfer.

I. Methods for Reducing Mission costs.

Automation of operations and standardization of communications protocols and operational methods can

allow significant savings in both the development and operational phases of a mission. Standards allow the
reuse of program code and procedures, both directly and indirectly by using protocol layering. Protocol
layering refers to the process of dividing the protocols into layers that handle certain functionality. Standard

interfaces are provided between the layers, so that layers which are optimized for a particular environment
can be substituted while still reusing the other parts. Standards allow interoperability between missions,
which allow not only sharing of development costs, but also in operations, as infrastructure can be shared

among missions.

Due to the availability of random-access storage on the spacecraft, it is now possible to automatically
retransmit data lost on the link, thus guaranteeing the delivery of telemetry data in a complete and
uncorrupted form. The use of a reliable transfer protocol, that is, a protocol that delivers contiguous, error-

free data, can in itself provide cost savings by allowing more efficient use of the link time. In the past, the
error rates on the link were monitored until the link quality reached a specified level, and then the data was
downloaded. If the data contained more than the acceptable number of errors, then the entire transfer had to

be repeated. With a reliable protocol, the transfer can proceed automatically as soon as the connection is
established, even if the error rate is relatively high, and there are guaranteed to be no errors in the

transferred data. Thus, data can be transferred under link conditions that would not have been possible if a
reliable protocol were not being used. Also, allowing uncorrected errors to remain in the transferred data

can impede the automation of the analysis of the data, and may require potentially expensive corrective



,g

measures to be taken by the end user. We will discuss how standardized data transfer protocols based on

automated file transfers can be used to reduce costs of mission operations.

II. Mission operations via file transfers.

There are certain requirements implicit in operating missions using file transfer operations. Naturally, the
spacecraft must have at least a rudimentary file system on board. The status quo of operations, for example,
downloading data, and uploading of data or commands, can be supported by operations with file transfers.

However, certain extensions to current operational modes will not be possible. For example, heavily

interactive operations cannot be supported efficiently due to overhead considerations.

It may not be possible to establish a reliable connection all the way from one end of the data transfer path to
the other. The contact with a spacecraft is very often intermittent, and communications may be established

to the spacecraft via different groundstations on different contacts. Therefore, the data transfer methods
considered here are based on a store and forward model, a similar concept to sending email on the Internet.

The store and forward method allows automation of routine data transfers to proceed without concern for

the contact schedule of the spacecraft.

III. Operations with Internet protocols.

Certainly the reliable, automatic transfer of data occurs all the time on the terrestrial Internet. However,

solutions developed for the Internet may not be easy to apply to the space environment. Internet file
transfer applications generally require an underlying end-to-end reliable transport layer protocol, and

therefore cannot be directly applied to data transfer over space links, since in general a reliable end-to-end
transport layer protocol will not be available, Assuming that the spacecraft can be accessed via an internet 1,

we will now describe how a mission operations concept can be built on the Internet protocols. Most of the
application layer Internet protocols are based on an interactive mode of operation, but in order to achieve

lower operation costs the routine operations must be automated. Furthermore, the applications designed for
data transfer on the Internet generally assume that a TCP connection can be established directly between

the end points, which will not be the case much of the time for most missions. A solution is to design an
application that transfers data automatically and is built on the existing lower layers of the Internet

protocols. A "messaging layer" can be built in to allow sharing of store and forward code. We will describe
one such application based on the SAFE protocol 2.

SAFE is an application layer protocol that is designed to transfer data automatically to or from a spacecraft
that can only be contacted intermittently. SAFE was targeted to automatically handle the routine transfer of
data to or from a spacecraft. SAFE has a client/server architecture: The configuration for a one-way data

transfer consists of a data server running on the node containing the data source and a client running on the
node to which the data is to be sent. There must also be proxy servers and clients on all nodes that perform

store and forward, but they are transparent to the endpoints. The transfer operation is performed via
requests for data that are sent from the client. These requests contain a prearranged identifier for the file,

the offset of the start of the request in the file, and the !ength of data requested. When the server receives a
request, it responds with the data requested, or an error condition if the data is not available. When the
client receives the data, it makes it available to user applications. If the data does not arrive in a reasonable

time or is not complete, the client requests the missing data again. Thus, reliability is maintained through a
data transfer loop closed at the application layer. The transport layer is assumed to only provide a stream

service, i.e., ordering of the data, and notification of lost data. SAFE does not require that the transport
layer provide reliable delivery in order to achieve end to end reliability, since reliability is managed at the

application layer. This method of operation can also be converted into a 'push' mode by having the client
initially request a very large amount of data. The server will then break the replies up into smaller pieces of
a specified length, and transfer data as it becomes available.

One possible operations scenario would use a SAFE application to transfer stored telemetry data that is
being continuously written into files on the spacecraft. Since the core procedures of SAFE do not include a

file discovery method, a mapping would have to be provided between the names of the files and the file
handle that SAFE uses to identify them. Then the client would be directed to transfer the flies cyclically



fromtheprearrangedsetof filehandles.Theserverandclientwouldusethemappingtonamethefiles
giventhefilehandle.Alternatively,sinceSAFEisextcnsible,amethodcouldbeaddedtoassociatethefile
handlewithafileinastandardway.SAFEcouldalsoaidinthemanagingofthefilestoreonthe
spacecraft:Theclientcouldbedirectedtoacknowledgereceiptofdata,andfilesthatareknowntohave
beensuccessfullycopiedcouldbedeleted.
SAFEcanalsobeusedtoprovideareliablestoreandforwardstreamserviceusingastandardextensionto
SAFEcalledtheRecyclableFileSystem(RFS).Anapplicationonthenodewiththedatasourcemaintains
theRFS,whichisaseriesofrotatingbuffersintowhichdatacanbewritten.Thedataisthenautomatically
transferredtoanequivalentsetofbuffersonthedestinationnode.Theapplicationalsokeepstrackof
whichdatahasbeentransferred,sothatapplicationscanaccessthedataassoonasit arrives,evenif it
hasn'tyetbeencontiguouslytransferred.Anapplicationthatwillusethedatacanreadit fromtheremote
RFS,eitherasastreamorbyrandomaccess.Thereliablestreamservicecouldbeused,forexample,to
uploadcommandloadstothespacecraft.

IV. Operations with CFDP.

CFDP (CCSDS File Delivery Protocol) is being standardized by the CCSDS (Consultative Committee for

Space Data Systems), an international standards organization for space communications protocols. More
information can be found on the CFDP protocol in the relevant CCSDS documents, referenced at the end of

this document. We will give a brief summary of the architecture of CFDP and describe how it could be

used as part of an automated data transfer mechanism 3.

CFDP is a store and forward messaging application designed for transferring files over space links and

maintaining a remote file system on a spacecraft. The messages can contain file data, directives for remote

management of the file store, user message data, or any combination thereof. Messages are passed between
CFDP entities, one on the node containing each file store, which handle the processing of file management

directives and writing of the file passed with the message, if there was one. File management directives
include such things as file deletion, file or directory creation, or renaming files. The behavior the entities
and the format of the messages are specified by CFDP. Each entity is controlled by a user application that

directs it to send messages. The process of sending a message in the CFDP nomenclature is called a
'transaction'. The user application can direct a CFDP entity to start a transaction (the put directive), cancel,

suspend, or resume a transaction, or report on the status of a transaction in process. For example, to transfer
a file from the spacecraft to the _ound, the user on the spacecraft would start a 'put' transaction, that is,
send a message. The message would include the file to be transferred. The remote entity would receive the

message and automatically write the file to the local file system. Transactions may also include user

messages. The user messages can be used to add functionality to the core procedures of CFDP. The format
of the user messages is not specified, except for that of two reserved messages. These reserved user

messages represent standard extensions to CFDP. One of them allows a remote user to get directory listings
of the local file store and the other initiates proxy transactions. Proxy transactions allow a user to direct a

remote CFDP entity to initiate a transaction, for example, to send a file. Without the proxy user message,

CFDP would not have any standard way to get a file from a remote entity.

CFDP can easily be configured to perform automated data transfer. When an instrument writes a data file
on the source node file system, the local user application directs the resident CFDP entity to perform a Put

operation to transfer the file to the ground entity. When the transaction is finished, the entity at the
destination notifies the spacecraft entity that the file has been delivered. The spacecraft entity then notifies
its user, which can then delete the file to free resources. The reverse procedure could be used to transfer

command loads to the spacecraft. This scenario requires two components that are not part of the CFDP
standard: user applications on the spacecraft and on the ground node. These applications would have to be

developed by the implementers of this automated file transfer operation. The user application on the

spacecraft directs its local CFDP entity to transfer any new files and handles the delivery of any user
messages. It may also delete the data after it has been transferred successfully, or its peer application on the
ground could issue the delete remotely. The user application on the ground uploads commands and other
data, handles user messages, and provides an interface for remote management of the data store on the

spacecraft.



V. Discussion

Although there is considerable overlap in functionality between CFDP and the Internet operations model
presented above, the functionality offered by CFDP is a small subset of that possible through use of the

Internet protocols. Therefore, the choice of which protocol to use depends on the requirements of the
mission. The design of CFDP is focused on file delivery and file management for missions configured

similarly to the way they are commonly done now. If the requirements of a mission can be satisfied by that

and possibly some slight extension in functionality, then CFDP will be adequate. CFDP is fixed on
supporting the status quo of mission operStions, and perhaps short-term extensions to it, albeit with
increased automation of operations. This focus should allow it to perform well under its targeted operations

scenarios. Conversely, however, it makes it very difficult to extend CFDP to support a significantly
different scenario. Therefore, if substantial additional functionality were required, the Internet operations

model would probably provide it at a lower cost.

VI. References

CCSDS File Delivery Protocol (CFDP). Draft Recommendation for Space Data System Standards, CCSDS

720. l-G-0.5. Green Book. Issue 0.5. Washington, D.C.: CCSDS, July 1999.

CCSDS File Delivery Protocol (CFDP). Draft Recommendation for Space Data System Standards, CCSDS

727.0-R-3. Red Book. Issue 3. Washington, D.C.: CCSDS, July 1999.

i The Internet protocols are optimized for use under the conditions typically found on the terrestrial

Internet. The space environment has many characteristics that can cause the Internet protocols to operate in
a non-optimal way or to fail outright. Much effort has been made to adapt them to the space environment,

including extensions and modifications to the Interne t protocols standardized by the CCSDS. More

information can be found on the SCPS homepage at <http://www.scps.org>.

2 More information about SAFE can be found on the SAFE website: <http://safe.gst.com>.

3 CFDP is not entirely consistent with the Internet operations model, since it includes its own transport

layer protocol, but it can be operated over UDP.


